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ABSTRACT
The Internet Movie Database (IMDb) is the world’s largest
collection of facts about movies and features large-scale rec-
ommendation systems connecting hundreds of thousands of
items. In the past, the principal evaluation criterion for
such recommender systems has been the rating accuracy
prediction for recommendations within the immediate one-
hop-neighborhood. Apart from a few isolated studies, the
evaluation methodology for recommender systems has so far
lacked approaches that quantify and measure the exposure
to novel content while navigating a recommender system. As
such, little is known about the support for navigation and
browsing as methods to explore, browse and discover novel
items within these systems. In this article, we study the
navigability of IMDb’s recommender systems over multiple
hops. To this end, we analyze the recommendation networks
of IMDb with a two-level approach: First, we study reach-
ability in terms of components, path lengths and a bow-tie
analysis. Second, we simulate practical browsing scenar-
ios based on greedy decentralized search. Our results show
that the IMDb recommendation networks are not very well-
suited for navigation scenarios. To mitigate this, we apply
a method for diversifying recommendations by specifically
selecting recommendations which improve connectivity but
do not compromise relevance. We demonstrate that this
leads to improved reachability and navigability in both rec-
ommender systems. Our work underlines the importance
of navigability and reachability as evaluation dimension of
a large movie recommender system and shows up ways to
increase navigational diversity.
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1. INTRODUCTION
Recommender systems support users in filtering informa-

tion and selecting items among huge numbers of possible
options. By connecting users with appropriate, relevant,
or novel items, recommender systems also help to reduce
information overload by filtering out unwanted items and
reducing cognitive load on users [9, 10, 20]. By establish-
ing connections between items, recommender systems enable
users to browse and peruse a system. Users enjoy browsing
a recommender system without the intention of making a
purchase [9], which is especially relevant on systems where
users immediately consume items (such as on YouTube [5]).
Finally, recommendations are also important in the discov-
ery of novel content [17].

In the past, the majority of research and development on
recommender systems has focused on improving rating pre-
diction accuracy. Spurred by the Netflix Prize challenge1,
where the evaluation criterion was the root mean squared er-
ror (RMSE) calculated on the rating predictions, researchers
have found substantial improvements in terms of computing
rating predictions [13].

So far, comparatively little attention has been paid to sup-
porting, evaluating, or improving navigation and exploration
properties of recommender systems. As a consequence, we
still do not know much about how these scenarios are sup-
ported in state-of-the-art recommender systems. Learning
more about the conditions of navigability in recommender
systems is vital for researchers and practitioners who want to
gain insight into how well these systems support navigation.

In this paper, we set out to analyze such properties in
a real-world recommender system. To this end, we apply

1http://www.netflixprize.com
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a recently presented network-theoretic framework [15] that
proposes a two-level approach:

1. The first step investigates the reachability of recom-
mendation networks (i.e., the networks formed by items
as nodes connected by recommendations as links) by
analyzing the topological characteristics in terms of
components, clustering, path lengths and partitions.
This analysis quantifies what parts of the network are
connected via links and how many hops it takes to
reach them.

2. The second step analyzes the results of these findings in
a more practical way by simulating browsing scenarios
on these networks. This provides us with insight into
how well these networks fare in real-world navigation
scenarios.

We apply this approach to investigate the case of IMDb, the
largest movie database in the world. In particular we are
interesting in answering the following research questions:

RQ 1 How well do the recommendations of IMDb support
reachability and navigability?

RQ 2 How can reachability and navigability on IMDb be
improved?

RQ 3 What are differences between collaborative filtering
and content-based recommendations in terms of reach-
ability and navigability?

In order to answer these questions, we analyze the two
types of recommender systems present on IMDb in their en-
tirety (see Figure 1 for an example of an IMDb page). Our
results show that the recommendation networks on IMDb
are split into a large number of disconnected components
with large distances within components. As a result, the
current state of IMDb recommendations does not support
any kind of exploration scenario very well. As a remedy,
we introduce recommendation diversification to better dis-
tribute the recommendations among items and show that
two diversification approaches are able to substantially im-
prove navigability.

2. RELATED WORK
The study of human navigation in networks was strongly

influenced by Milgrams and Travers [19, 24], who performed
a series of experiments on navigation in social networks.
They found that even within very large social entities, such
as the entire United States, humans were able to find con-
nections to others through a very small number of intermedi-
aries. This coined the term of Six Degrees of Separation. The
notion of an efficiently navigable network was later formal-
ized by Watts and Strogatz, who described high clustering
and short path lengths as characteristics of highly naviga-
ble small-world networks [25, 26]. Kleinberg identified fur-
ther properties that rendered networks efficiently navigable
with decentralized search algorithms [11, 12]. The naviga-
tion model of greedy decentralized search was later used to
analyze human navigation dynamics in networks [8, 16, 23].

West and Leskovec [27] studied human goal-oriented nav-
igation in the information network of Wikipedia and found
that humans took only a few clicks longer than the shortest
possible paths. However, in contrast to the shortest paths,

Figure 1: IMDb page. Example of an IMDb movie page,
displaying facts, a voting score, links to videos and photos
and collaborative filtering recommendations.

the resulting click trails exhibited a characteristic zoom-
out phase (leading to more general concepts), followed by
a phase of homing in to the target based on similarity.

Human navigation on recommender systems can occur in
a range of uses cases. Recommendation browsing helps in
discovering novel content [17], and the same has been found
for search [28], where some users prefer navigation to search
even when they know the target [22]. Generally, recom-
mender systems help in learning and decision making [18,
20]. Users are more likely to follow links on movie rec-
ommendation sites than on factual websites such as Wiki-
pedia [6]. On YouTube, recommendations fulfill the need
for unarticulated want [5] and form a vital part of the user
experience by connecting items.

A few studies have already investigated navigability on
recommender systems. Music recommender systems were
found to show heavy-tail degree distributions as well as small-
world properties [2]. Several variations of IMDb recommen-
dation networks have been found to exhibit long-tail degree
distributions [7]. Celma and Herrera [3] found that collab-
orative filtering led to popularity bias and that a trade-off
existed between accuracy and other evaluation metrics.

A simple method to improve navigability by selecting rec-
ommendations based on reachability was proposed by Seyer-
lehner et al [21]. We improve on this by taking the relevancy
of recommendations as wells as their directionality into ac-
count.



3. MATERIALS AND METHODS

3.1 Data Sets
The Internet Movie Database (IMDb) is a database of

facts about movies and television shows. The website started
out as a hobby project on Usenet and has since grown to be
the largest movie website worldwide2 . The website presents
facts and details about titles (movies, TV shows, short films
and so forth), such as plot, cast, trailers and reviews, as
well as information about actors and actresses, directors
and crew. As of January 2015, the database contained facts
about 3.1 million titles3.

Users on IMDb can contribute and edit facts, although
changes are moderated before being entered into the database.
Users can also rate movies, write reviews and participate in
messaging forums.

IMDb offers two different recommender systems:

Collaborative Filtering Recommendations (CF).
IMDb uses non-personalized rating-based recommenda-

tions for its titles, listed as People who liked this also liked. . . on
title pages. The interface shows a total of 12 CF recommen-
dations, from which 6 are immediately visible (see Figure 1
for an example of this interface).

Content-based Recommendations (CB).
Up until a site redesign in 2010, IMDb used non-personalized

content-based recommendations 4. These recommendations
were computed from a proprietary combination of facts such
as title, keywords, genre and user votes. This interface
including the recommendations is still available through a
change in the user preferences. In the interface, 5 recom-
mendations are visible initially, and a total of 10 are avail-
able by following a link.

The presence of two parallel recommendation engines en-
abled us to directly compare the navigability within two
real-world recommender systems side-by-side. To obtain the
data on the recommender systems, we performed an exhaus-
tive search over the IMDb title IDs by enumerating the space
of 10 million possible values. During our crawl in January
2015, we were able to obtain the entire database of about 3.1
million titles in this way. We then extracted facts, such as
release date, plot, storyline and average rating, as well as all
available recommendations of both types. In total, we ob-
tained 785, 019 nodes with content-based recommendations
and 168, 560 nodes with collaborative-filtering recommenda-
tions.

As the basis for the diversification approaches, we also in-
spected the reviews for each title and downloaded all ratings
assigned as part of a review. After that, we visited the pro-
file pages of all users who had written at least one review
and additionally downloaded all of their ratings they had
assigned without an associated review, if they were publicly
available. To avoid problems with sparse data, we only used
data from films with at least three ratings and users who had
rated at least three titles. By combining the profile ratings
with the reviews ratings, we obtained a total of 25, 290, 692
million ratings from 149, 240 users for 168, 078 titles.

2http://http://www.imdb.com/pressroom
3http://http://www.imdb.com/stats
4http://www.imdb.com/help/show leaf?history

3.2 Recommendation Networks
We constructed unpersonalized top-N recommendation

networks from the recommendations we obtained from IMDb.
In each of these networks, the items were represented as
nodes and recommendations formed directed edges. We con-
structed a total of four different networks: Two for collab-
orative filtering, with 6 and 12 recommendations per node
(denoted as CF (6) and CF (12)), and two for content-based
recommendations with 5 and 10 recommendations per node
(denoted as CB (5) and CB (10)). The number of recom-
mendations was therefore the same as in the user interfaces.

For the collaborative filtering networks, a fraction of nodes
did not have any outgoing recommendations and were thus
reachable via recommendations but then constituted a dead
end. These nodes made up 11% of the CF (6) and 21% of
the CF (12) network.

3.3 Diversification
To improve navigability, we introduced diversity into the

networks. User satisfaction with diversity for collabora-
tive filtering has been found to peak between 30-40% di-
versity [29]. Based on this, we replaced recommendations as
follows: For the immediately visible recommendations (5 for
CB and 6 for CF), we replaced two recommendations. For
the total recommendation list (10 for CB and 12 for CF)
we replaced 4 recommendations. We use the following three
approaches for diversification:

• Random Recommendations. The introduction of ran-
dom links generally leads to well-connected networks with
a small diameter. As such, introducing random recom-
mendations effectively constituted an upper bound on the
possible improvement through diversification.

• Diversify. Ziegler et al [29] proposed a method called
Diversify. To apply it, we first build the recommenda-
tion network with the desired number of non-diversified
recommendations (e.g., 4 for CF (6)). Diversify then in-
troduces diverse recommendations for each node as the
ones minimizing the similarity to the recommendations
already present. We compute similarities between items
by comparing their rating vectors.

• Expanded Relevance (ExpRel) Küçüktunç et al. [14]
proposed a method to take the location of recommenda-
tions in the network into account. We use a simplified ver-
sion thereof: We first build the recommendation network
G = (V,E) with of the desired number of non-diversified
recommendations (e.g., 4 for CF (6)). Based on this, for
each node n ∈ V we compute Γ(n, 2), the set nodes reach-
able in the two-hop neighborhood of each node. We then
rank potential diverse recommendations d ∈ V based on
the number of nodes in Γ(d, 2) − Γ(n, 2), the number of
additional nodes the recommendation would add.

For the random recommendations, we added the diverse
recommendations to all nodes that had existing outgoing
recommendations in the graph. For Diversify and ExpRel,
we first computed the cosine similarities between all pairs of
items for which co-ratings were present in our dataset. We
then selected all items for which at least 100 similarities to
other nodes could be computed and used the top 50 most
similar nodes to select diversified recommendations from.
This left us with 145, 504 nodes for the CB and 118, 691 for
the CF networks.

http://http://www.imdb.com/pressroom
http://http://www.imdb.com/stats
http://www.imdb.com/help/show_leaf?history
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Figure 2: Topology Analysis. The figures show the sizes of the largest component, the numbers of components and the
clustering coefficients. The unmodified recommendation networks, as present on IMDb, exhibit a comparatively small largest
components and a high number of disconnected components. Diversification approaches change this and result in a larger
component, while reducing clustering.

4. REACHABILITY
As the first part of our analysis, we study reachability

of recommendation networks and analyze what parts of the
graph are connected by paths of arbitrary lengths. This
represents the basis for further analyses of efficient reach-
ability and partition reachability, which permit us to gain
more detailed insight into navigational dynamics.

4.1 Effective Reachability
As the first step, we investigate the fundamental problem

of whether a connection between pairs of nodes exists at all.

Strongly connected components.
The largest component enables users to explore all of its

items by following recommendation links and is a direct mea-
sure for the fraction of the network reachable via navigation.
In addition to the largest component, the number of compo-
nents present in the network shows the division into separate
parts that are not interconnected by recommendation links.
Figure 2 shows that in their unmodified versions, content-
based recommendations led to substantially smaller largest
components than collaborative filtering recommendations.

This confirms results from a previous study which found col-
laborative filtering to lead to larger components [15]. Pos-
sible contributing factors are the higher number of recom-
mendations for collaborative filtering (6 and 12 versus 5 and
10 for content-based recommendations) as well as the higher
total number of nodes in the content-based network. Diver-
sification approaches were able to increase the size of the
largest component substantially. The random diversifica-
tion demonstrated the maximally achievable improvement,
as random graphs are among the graphs with the highest
possible reachability.

In terms of numbers of components, the results show that
there exists a large number of disconnected components with-
in the recommendation network. For the collaborative fil-
tering recommendations, a major contributor to this is the
fact that recommendations pointing away from items ex-
isted only for 79% of the nodes in CF (6) and 89% of nodes
in CF (12). Those nodes therefore each formed a separate
component with only one node in the directed graph. This
problem was not present for the content-based recommen-
dation network. However, the large number of disconnected
components clearly hinders navigation in both networks. Di-
versification again mitigated this issue.
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Figure 3: Eccentricity Analysis. This figure shows a sampled eccentricity distribution of both unmodified and diversified
recommendation networks for a sample of 15% of the nodes in the largest strongly connected component (chosen uniformly
at random). Eccentricity measures the longest shortest path from a node to any other node in the same component. With
distances of up to 140 hops, the unmodified networks as present on IMDb do not lend themselves to navigation very well.
Eccentricities can be reduced by introducing diversified recommendations.

Clustering Coefficient.
The clustering coefficient measures the fraction of neigh-

bors that have a connection among themselves. High cluster-
ing implies more predictable browsing (with a large overlap
of recommendations between related nodes) while low clus-
tering increases the chance of being able to break out of the
local context and follow a diverse or novel recommendation.
Generally, high clustering with a few diverse links best sup-
ports navigation [26]. We define the clustering coefficient for
recommendation networks as

C =
1

|V |
∑
i∈V

|{(j, k) ∈ E|j, k ∈ Γ(i, 1)}|
|Γ(i, 1)| (|Γ(i, 1)| − 1)

, (1)

where Γ(i, 1) is the set of nodes reachable from i in one hop.
The results show that the content-based networks exhibit
higher clustering coefficients than the collaborative filter-
ing networks. This indicates that content-based recommen-
dations led to more redundancy in the resulting network.
Together with the component sizes, it becomes apparent
that a trade-off exists between reachability (i.e., the size of
the largest component) and navigation predictability (i.e.,
higher clustering, which leads to better predictability of the
area of a network a recommendation leads to).

4.2 Efficient Reachability
As the second step, we study the actual distance between

pairs of nodes (given that there exists a path that connects
them). This allows us to further investigate how well these
networks support navigability and browsing. The proba-
bility that a user follows a link instead of typing in another
URL or using the search function is around 65% [6] in movie
recommender systems. This indicates that path lengths need

to be short to properly support browsing scenarios.
To assess the difficulty of navigation, we evaluate eccen-

tricity distribution on the largest strongly connected com-
ponent. The eccentricity of a node measures the longest
shortest distance between the node and any other node of
the same component, therefore allowing us to learn about
distances in the recommendation network. For a node i ∈
SCC(G),

ecc(i) = max
j∈SCC(G)

d(i, j), (2)

where SCC(G) is the largest strongly connected component
in G and d(i, j) is the geodesic distance between i and j. To
evaluate eccentricity, we sampled the values for 15% of the
nodes in the largest strongly connected component (between
8, 000-112, 000 nodes, chosen uniformly at random).

For the content-based network, eccentricities were com-
paratively large (cf. Figure 3), with distances reaching up
to 140 hops. The collaborative filtering networks exhibited
lower eccentricities, rendering them better suited for brows-
ing. Diversification measures lowered eccentricities for both
networks.

4.3 Partition Reachability
As the third step, we study reachability based on the bow-

tie model. The bow-tie model is a partitioning of a graph
into three major components: IN, SCC and OUT, as well as
a few additional ones, with the disconnected nodes collected
in OTHER [1] (see Figure 5 for details). A bow-tie analysis
allows us to learn more about the navigational structures in
recommendation networks beyond the largest strongly con-
nected component.
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Figure 4: Bow-Tie Analysis. The figure shows the partition of the recommendation networks based on the bow-tie model
(cf. Figure 5). The recommendation networks of IMDb consisted mainly of nodes in IN, SCC and OUT, implying that they
were not in completely disconnected components. Diversification led to a larger share of nodes in the SCC.

IN OUT SCC 

OTHER 

TUBE 

TL_IN 
TL_OUT 

Figure 5: Bow Tie Model. The bow tie model [1] is a par-
titioning of a graph into a strongly connected component or
core (SCC ) as well as OUT which is reachable from it and
IN which is able to reach it. Nodes in TUBE are on a de-
tour from IN to OUT. The TENDRILS (TL IN, TL OUT)
contain nodes pointing away from IN or pointing to OUT.
Remaining nodes are collected in OTHER.

The bow-tie analysis confirmed that the size of the largest
strongly connected component increased with diversification
(cf. Figure4). Moreover, it shows that most other nodes
were in the IN and OUT components. From a navigation
perspective, this is desirable as it implies that these nodes
are either able to reach the largest component or are reach-
able from it. When following recommendations from a node
contained in IN, it is likely that a user will be able to reach
the SCC. Figure 6 depicts the changes in component mem-
bership from the unmodified network to a diversified one.
Increasing the size of the SCC via diversification implies
that some of the recommendations from items previously in
IN now point to nodes in the SCC and therefore become
themselves a part of it. Note that the number of nodes in
OTHER components slightly increases due to the fact that
diversifying recommendations removes some of the recom-
mendations to sink nodes (that do not have any outgoing
recommendations). Navigationwise, this implies that the
number of dead-ends encountered by users browsing the rec-
ommendation network decreases.

CB (5) CB (5, Diversify)

IN

SCC
OUT
TL_IN
TL_OUT
TUBE
OTHER

IN

SCC

OUT
TL_IN
TL_OUT
TUBE
OTHER

Figure 6: Bow-Tie Membership Change Analysis for
CB (5) to CB (5, Diversify). Nodes were mostly part
of IN in the unmodified recommendation network. Diversi-
fication moved items from IN to SCC.

5. NAVIGABILITY
As the first part of our analysis, we studied the reachabil-

ity of recommendation networks. In the second part, we are
now interested in how well the networks fare in terms of ac-
tual browsing scenarios. To this end, we simulate browsing
in the networks and evaluate the results.

5.1 Start and target nodes
We evaluate browsing scenarios inspired by the desire to

find a few movies relevant to certain genres. To this end, we
take the genres (e.g., Action) as well as the genre combina-
tions (e.g., Action, Comedy) as listed on IMDb5 for a total
of 93 target genres. For each of these genres, we compute
the 25 top-rated items with at least 1, 000 ratings from our
rating dataset and take them as target sets. We restrict our
analysis to the largest strongly connected components (cf.
Figure 2) and sample 100 start nodes for every target set,
leaving us with 9, 300 start-target missions to simulate.

5.2 Link selection strategy
Our simulation approach was based on greedy decentral-

ized search, a method to analyze navigation dynamics in net-

5http://www.imdb.com/genre/

http://www.imdb.com/genre/
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Figure 7: Nodes found in navigation simulations. The navigation scenarios were not very well-supported in the unmod-
ified networks, where the simulations found between 0.2 and 1 node per run on average. With diversification approaches, the
number of nodes found in the simulation of exploratory navigation scenarios increased by 100− 300%.

works [8, 16, 23]. The simulation started at a target node
and at each step greedily selected the outgoing recommen-
dation with the highest similarity to the target set. The sim-
ulation kept track of visited nodes and explored each node
only once. In case of a dead-end (no outgoing recommenda-
tions at all or no unvisited outgoing recommendations), the
simulation backtracked to the previously visited node. We
simulated each mission for a total of 50 clicks.

As the background knowledge to inform link selection, we
computed the TF-IDF similarities between items by making
use of the words contained in the title, plot and storyline
descriptions. The value for a potential recommendation link
was computed as the similarity between the current item
and the average vector of the 25 target nodes. This is sim-
ilar to the concept of information scent [4], where a link is
thought to emanate a certain smell based on its usefulness
with respect to the target.

We believe that these are plausible assumptions for users
who have some idea where a recommendation could lead
based on the information present with the recommendation
in the interface (i.e., title and image).

5.3 Results
Figure 7 shows the results for the simulations. Overall,

the navigation scenarios were not very well-supported in the
unmodified networks, where the simulations found between
0.2 and 1 node per run on average. The diversification ap-
proaches were able to improve the outcomes compared to the
unmodified recommendation networks substantially: both
ExpRel and Diversify improved the number of found target
nodes by 100 − 300%, thus strongly improving navigability
in these networks.

Random diversification, however, did not lead to better
results than the unmodified networks. Even though the in-
jection of random links led to large components (cf. Fig-
ure 2), the resulting lower clustering meant that the simi-
larity information was of little use in informing a navigation
process.

6. DISCUSSION AND CONCLUSIONS
In this paper, we analyzed two recommendation networks

from IMDb by applying a two-level evaluation approach for
recommender systems to study reachability and navigability.
In the following, we discuss the findings in the context of our
research questions.

RQ 1 How well do the recommendations of IMDb support
reachability and navigability?

The results of our analysis and our simulations show that
with the unmodified recommendations present on IMDb,
navigating the network (if at all possible) represents a very
hard task for users. Within our navigation simulations, it
was possible to retrieve only about one out of 25 target node
within 50 steps, even though the target nodes were chosen
to be the most popular items in terms of ratings and had a
high number of votes.

RQ 2 How can reachability and navigability on IMDb be
improved?

Applying two simple diversification measures led to im-
provement of reachability and navigability for both recom-
mendation networks. The number of items the simulations
was able to retrieve saw an up to threefold increase, thus
making it more realistic for users to be able to gain useful
knowledge from exploratory browsing in the network.

RQ 3 What are differences between collaborative filtering
and content-based recommendations in terms of reachability
and navigability?

The collaborative filtering recommendations (the approach
currently in use by IMDb) led to a larger strongly connected
component, resulting in a larger reachable share of the net-
work than the network for content-based recommendations.
However, in terms of the simulated navigation scenarios,
content-based recommendation networks fared slightly bet-
ter. This suggests that content-based recommendations make
it easier to reach more popular nodes. Content-based rec-
ommendations led to networks with higher clustering—thus
making link selection in them more predictable. Another
possible explanation for this is that the information used
for generating these recommendations overlapped with the
background knowledge used in the simulations.

In the diversification measures we applied, we made the
assumption that users would prefer between 30−40% diver-
sification, based on a study by Ziegler et al. [29]. In future
work, it would be interesting to conduct a usability study
investigating the results of applying diversification on a live
system and testing different fractions of diversified recom-
mendations.

The results of this paper suggest that navigating and brows-
ing recommendations are currently not very-well supported
on IMDb. Our work shows a possible way of improving this
via diversification measures.
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