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Abstract

Traditionally, evaluation methods in the field of semantic technologies have focused on the end result of ontology engineering
efforts, mainly, on evaluating ontologies and their corresponding qualities and characteristics. This focus has led to the development
of a whole arsenal of ontology-evaluation techniques that investigate the quality of ontologies as a product. In this paper, we aim
to shed light on the process of ontology engineering construction by introducing and applying a set of measures to analyze hidden
social dynamics.We argue that especially for ontologies which are constructed collaboratively, understanding the social processes
that have led to its construction is critical not only in understanding but consequently also in evaluating the ontology. With the work
presented in this paper, we aim to expose the texture of collaborative ontology engineering processes that is otherwise left invisible.
Using historical change-log data, we unveil qualitative differences and commonalities between different collaborative ontology
engineering projects. Explaining and understanding these differences will help us to better comprehend the role and importance of
social factors in collaborative ontology engineering projects. We hope that our analysis will spur a new line of evaluation techniques
that view ontologies not as the static result of deliberations among domain experts, but as a dynamic, collaborative and iterative
process that needs to be understood, evaluated and managed in itself. We believe that advances in this direction would help our
community to expand the existing arsenal of ontology evaluation techniques towards more holistic approaches.
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1. Introduction

Today, large-scale ontologies in fields such as biomedicine
are developed collaboratively by a large set of distributed users,
using tools such as collaborative Protégé [1; 2] that provide
structured logs of changes of the ontology. Evaluating the
outcome of such collaborative ontology engineering efforts
is a problem of pressing practical and theoretical relevance:
For managers and quality assurance personnel, understanding
the quality of collaboratively constructed ontologies—and how
they have been constructed—is key. For developers of tools for
collaborative ontology construction, understanding these pro-
cesses will help improve the tools and make them fit more nat-
urally the process that is already taking place. For researchers,
collaborative ontology engineering projects with large numbers
of users involved add a new social layer and additional com-
plexity to an already complex theoretical problem. Therefore,
we need new methods and techniques to analyze and further
investigate the social dynamics of collaborative ontology engi-
neering efforts.

Traditionally, evaluation methods in the field of semantic
technologies have focused on the end result of ontology en-
gineering efforts, mainly, on evaluating ontologies and their
corresponding qualities and characteristics. This focus has led
to the development of a useful arsenal of ontology-evaluation
techniques that study and investigate the quality of ontologies

as a product [3]. However, ontology evaluation represents a
wide open problem, and we need new techniques, especially
for ontologies that are constructed collaboratively. For exam-
ple, evaluating an ontology that has been constructed by hun-
dreds of users without understanding who these users are, what
they have contributed, where they had disagreed with one an-
other, or how they have participated would paint a very narrow
picture of the ontology under investigation. We argue that un-
derstanding the usually hidden social dynamics that have led to
the construction of ontologies has the potential to create new
insights and opportunities for ontology evaluation.

Our main objective in this paper is to study the social fabric
of collaborative ontology engineering projects empirically, as a
prerequisite for devising future evaluation methods that inves-
tigate the social processes behind such projects. Our high-level
hypothesis is that quantitative analysis of ontology change data
can provide qualitative insights into characteristics of collabo-
rative ontology construction processes.

Our work is inspired by work of researchers who inves-
tigate the social dynamics behind collaborative construction
processes in a range of different domains, including open
source software and collaborative authoring systems such as
Wikipedia. We will leverage and adapt work from these areas
whenever possible in order to study and explore social dynam-
ics in the context of collaborative ontology construction, such
as the work of Suh et al. [4] who analyzed the influence of a set
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of different factors on collaboration between Wikipedia editors.
Voss [5] conducted research regarding the analysis of different
attributes of Wikipedia articles and users, such as the amount
of edits contributed by each user or the amount of distinct users
that worked on each article. Blumenstock [6]; Wilkinson and
Huberman [7] on the other hand analyzed and identified, among
others, that the amount of changes performed on an article in
Wikipedia correlates with its quality. Stamelos et al. [8] stud-
ied the quality of code in open source software development
projects by counting and comparing specific attributes of the
commited source code against industry standards.

Research questions: Using historical data from five dif-
ferent collaboratively constructed ontologies in the field of
biomedicine and a sample of Wikipedia articles as a control,
we aim to study the following research issues:

1. Dynamic aspects (section 4.1):
(a) How does activity in the system evolve over time?
(b) How are changes to the ontology distributed across

concepts?
(c) How does activity in ontology engineering projects

differ from activity in other collaborative authoring
systems such as Wikipedia?

2. Social aspects (section 4.2):
(a) Is collaboration actually happening or do users work

independently?
(b) How is the work distributed among users?
(c) How does collaboration in ontology engineering dif-

fer from collaboration in other systems such as
Wikipedia?

3. Lexical aspects (section 4.3):
(a) Is the vocabulary in the ontology stabilizing or does

it continue to change/grow?
(b) Are the concepts in the ontology lexically stabilizing

or do they continue to change?
4. Behavioral aspects (section 4.4):

(a) Are collaborative ontologies constructed in a top-
down or a bottom-up manner?

(b) Are collaborative authoring systems such as
Wikipedia constructed similar (i.e. top-down or
bottom-up) to collaboratively engineered ontolo-
gies?

(c) How do contributors allocate activity on different ab-
straction levels in different ontologies?

In order to explore these questions, we introduce a set of prac-
tical measures and apply them to the structured change-logs of
five different collaborative ontology construction efforts to as-
sess their efficacy. While our results indicate that these mea-
sures provide a useful approach to answering questions like
the ones above, we expect future work to discover other—
potentially more useful—measures to characterize social dy-
namics in collaborative ontology engineering projects.

Contributions: To the best of our knowledge, the work
presented in this paper represents the most fine-grained study
of social dynamics in very large collaborative ontology engi-
neering projects to date. We develop and apply quantitative

metrics that help answer qualitative questions related to dy-
namic, social, lexical, and behavioral aspects of collaborative
ontology engineering processes. Our results show that (i) there
are qualitative differences between different collaborative on-
tology engineering projects that demand explanations in terms
of organizing and managing quality in such projects and (ii)
there are also interesting commonalities that set collaborative
ontology engineering projects apart from other collaborative
authoring projects such as Wikipedia. Our findings suggest
that collaborative ontology engineering represents a novel
and interesting phenomenon with unique characteristics that
warrant more research in this direction.

The paper is structured as follows: In section 2 we review re-
lated work. In section 3, we introduce the data sets used in this
study, and provide descriptive statistics. We proceed with pre-
senting the results from our comparative study of change logs
in section 4. In section 5, we discuss our results and interpret
our findings. We conclude our paper with a summarization of
our findings and implications in section 6.

2. Related Work

For the research presented in this paper, we consider work
from the following domains to be of relevance: ontology evalu-
ation; collaborative ontology engineering; collaborative author-
ing systems.

2.1. Ontology evaluation

With increasing relevance of ontologies over the past years,
our field has developed many different approaches for measur-
ing and evaluating the quality of ontologies. In 2005 for ex-
ample, Brank and colleagues identified four different types of
techniques for ontology evaluation which have been elaborated
by other researchers [3]: (i) defining and comparing an ontol-
ogy against a previously defined “golden standard” [9] by us-
ing some measures of semantic similarity; (ii) evaluation of the
ontology through an application based approach [10] by defin-
ing the fitness of a given ontology to satisfy a given task; (iii)
extracting evaluation information from related data to evalu-
ate the similarity or ontological “fit” with a related text corpus
[11]; and (iv) manual evaluation [12], which typically involves
human subjects comparing and measuring ontologies against a
predefined set of requirements or measures.

While these approaches to ontology evaluation often provide
useful and meaningful insights into the quality of ontologies
as a product, an in-depth investigation of the processes behind
ontology construction is usually not part of evaluation proce-
dures. We believe that further analyzing the process of on-
tology construction especially when combined with established
approaches that evaluate an ontology as a product will expand
our understanding of the quality of ontologies, the trade-offs
that developers had to make, areas that developers consider con-
tentious or under-developed, and so on. Additionally to eval-
uating the content and the purpose of an ontology, it is also of
great importance to evaluate its consistency [13; 14]. In Sabou

2



et al. [15] the authors argue that automatically extracting in-
formation from the semantic web can also be used to create
automatic task-based evaluations that can assess the quality of
ontologies. Obrst et al. [16] have surveyed different state-of-
the-art evaluation techniques and conclude that ontology evalu-
ation should already be part of the engineering and development
process of an ontology.

2.2. Collaborative Ontology Engineering

In parallel to research on ontology evaluation, our field has
developed a number of tools aimed at supporting the collab-
orative development of ontologies. Semantic Wikis [17], for
example, add semantic capabilities to traditional Wiki systems.
Some of the semantic Wikis available today focus on enhancing
content with semantic links in order to allow more meaningful
navigation and to support richer queries. Semantic Wikis usu-
ally associate a page to a particular instance in the ontology,
and the semantic annotations are converted into properties of
that instance.

OntoWiki [18] is one particular example of a semantic Wiki
that supports collaborative ontology engineering, which focuses
on the acquisition of instance data and not the ontology or
schema itself. MoKi [19] is another collaborative tool that is
implemented as an extension of a Wiki, which has been de-
ployed in a limited number of real world use cases. Knoodl1 is
a commercial ontology editor built on top of a Wiki platform
that provides basic ontology editing features. Knoodl combines
structured ontology information with a free-text Wiki page and
focuses more on searching capabilities and linking to SPARQL
endpoints. Soboleo [20] and PoolParty [21] are Web-based
tools for collaboratively creating SKOS and RDF vocabular-
ies. They support lightweight editing of taxonomies, and their
focus is on providing services that take advantage of these vo-
cabularies, such as annotation or tagging of resources, faceted
browsing, and semantic search.

In this paper, we study five ontologies that were developed
with Protégé and its extensions for collaborative development,
such as WebProtégé and iCAT [2]. First, these tools provide
a robust and scalable environment for collaboration and are
used in several large-scale projects, such as the development
of the 11th revision of the International Classification of Dis-
eases (ICD-11) by the World Health Organization [22] (WHO).
Second, the environment enables users not only to edit the on-
tologies, but also to create notes and discussions as the users
explain their modeling choices and try to reach consensus on
the representation. Finally, Protégé keeps a detailed structured
log of changes and their metadata [23], which makes the data
collected by Protégé particularly useful for the purposes of this
work. However, Protégé is not a requirement for our work, it is
the presence of a detailed log of changes that is a requirement
for the type of analysis that we present in this paper. As long as
an ontology has a detailed structured log of changes available–
regardless of the development environment that its authors use–
it is amenable to the type of analysis that we describe.

1http://knoodl.com

Pöschko et al. [24] created a tool to browse an ontology and
aspects of its history visually, which provides quantitative in-
sights into the creation process, and applied it to the ICD-11
project. This related work can be considered as an initial at-
tempt towards the deeper and broader analysis presented in this
paper.

The DILIGENT (distributed, loosely-controlled and evolv-
ing engineering of ontologies) methodology was first presented
in 2004 by Pinto et al. [25] and tried to provide a methodol-
ogy to enhance the collaborative ontology engineering process
by augmenting interactions between ontology and domain ex-
perts. In 2007 Tempich et al. [26] conducted a detailed case
study using DILIGENT to create an ontology. CICERO [27],
which was introduced in 2008 and is an extension to the Seman-
tic Media Wiki2, follows a similar approach and augments user
discussions and documentation as well as efficiency by support-
ing the design rationale of ontology engineers and is also based
on DILIGENT. However, once an ontology is engineered it still
needs to be maintained, meaning that already existing concepts
and properties have to be updated. A framework for the task
of ontology evolution, basically maintaining an ontology and
keeping already existing information up to date, was discussed
and proposed by Noy et al. [28] in 2006.

2.3. Collaborative Authoring Systems

Research on collaborative authoring systems such as
Wikipedia has in part focused on developing methods and
studying factors that improve article quality or increase user
participation. For example, Kittur et al. [29] have shown that
for Wikipedia and del.ico.us, two collaborative online author-
ing systems, participation across users during the initial start-
ing phase is unevenly distributed, resulting in few users (ad-
ministrators) with a very high participation and contribution
rate while the rest of the users (common users) exhibits little
if any participation and contribution. However, over time con-
tributions shift from administrators towards an increasing num-
ber of common users, which at the same time still make little
contributions individually. Thus, an analysis of the distribu-
tion of work across users and articles (as mentioned in Kittur
and Kraut [30]) can provide meaningful insights into the dy-
namic aspects of the engineering process. This line of work
is also related to research on problems that are common in
these types of environments, such as the free-riding and ramp-
up problems [31]. The free-riding problem characterizes the
fact that users would rather tend to enjoy a resource than con-
tribute to it. The ramp-up problem describes the issue of mo-
tivating users to contribute to a system when either content or
activity (or both) in the overall system is very low. Researchers
have proposed different types of solutions to these—sometimes
called—knowledge-sharing dilemmas [31]. Wilkinson and Hu-
berman [7] have shown that the quality of Wikipedia articles
correlates with the number of changes performed on these arti-
cles by distinct users. More recent research which uses collab-
orative authoring systems, such as Wikipedia as a data source,

2http://semantic-mediawiki.org
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focuses not only on describing and defining the act of collabora-
tion amongst strangers and uncertain situations that contribute
to a digital good [32] but also on antagonism and sabotage of
said systems [33]. It has also been discovered only recently that
Wikipedia editors are slowly but steadily declining [34]. There-
fore Halfaker et al. [35] have analyzed what impact reverts have
on new editors of Wikipedia. Moreover, many publications also
deal with automatic information and knowledge extraction from
Wikipedia [36; 37] due to the uprising of the semantic web and
open linked data.

Our work builds upon this and related lines of research
and expands them towards collaborative ontology authoring
systems. Although one might assume that results would
be similar across these two domains, our work reveals both
salient and subtle differences between the social dynamics in
parts of Wikipedia, and five collaborative ontology engineering
projects.

3. Material and Methods

In the following study, we use two main types of data for
our analysis: First, we use a set of biomedical ontologies that
are being developed collaboratively in Protégé (and its deriva-
tives) and a set of articles from Wikipedia describing biomed-
ical terms as a control (Section 3.1); and second, we use the
structured logs of changes that reflect collaborative develop-
ment of these resources (Section 3.2).

3.1. Data sets: Ontologies & Wikipedia

In our selection of data sets, we were guided by the following
practical requirements:

1. A structured log of changes was available for analysis.
2. The ontology and its engineering process exhibited some

signs of collaboration, by having at least two users who
were actively involved in the ontology development.

Because many collaborations in our group are with the devel-
opers of ontologies in the field of biomedicine, all ontologies
in our study are from this field. Similarly, our collaborators
use Protégé, or its derivatives, such as WebProtégé and iCAT.
However, the ontologies that we considered run the gamut in
terms of their size, complexity, the number of contributors, and
the collaborative workflows that their authors deploy. Table 1
gives an overview of the data sets that we used in this work, and
some descriptive statistics. Figure 1 gives a first impression of
the complexity of the ontological structure of the data sets. For
comparison and control, we acquired a data set of biomedical
articles from Wikipedia. All Wikipedia articles in our data set
were marked up with codes from the International Classifica-
tion of Diseases revision 10 (ICD-10) by the Wikipedia com-
munity. For all these articles, we have collected their complete
change histories (through Wikipedia’s change log) and applied
the same analysis to that data as well.

In the following, we briefly describe the data sets and their
characteristics in some greater detail.

The National Cancer Institute’s Thesaurus (NCI The-
saurus) [38] has over 80,000 classes and has been in develop-
ment for more than a decade. It is a reference vocabulary cover-
ing areas for clinical care, translational and basic research, and
cancer biology. A multidisciplinary team of editors works to
edit and update the terminology based on their respective areas
of expertise, following a well-defined workflow. A lead edi-
tor reviews all changes made by the editors. The lead editor
accepts or rejects the changes and publishes a new version of
the NCI Thesaurus. The NCI Thesaurus is an OWL ontology,
which uses many OWL primitives such as defined classes and
restrictions.

The International Classification of Disease (ICD) revision
11 (ICD-11),3 developed by the World Health Organization, is
the international standard for diagnostic classification that is
used to encode information relevant to epidemiology, health
management, and clinical use. Health officials use ICD in all
United Nations member countries to compile basic health statis-
tics, to monitor health-related spending, and to inform policy
makers. As a result, ICD is an essential resource for health care
all over the world. ICD traces its origins to the 19th century and
has since been revised at regular intervals. The current in-use
version, ICD-10, the 10th revision of the ICD, contains more
than 20,000 terms. The development of ICD-11 represents a
major change in the revision process. Previous versions were
developed by relatively small groups of experts in face-to-face
meetings. ICD-11 is being developed via a web-based process
with many experts contributing to, improve, and reviewing the
content online. It is also the first version to use OWL as its
representation format. Unlike the NCI Thesaurus, the ICD-11
ontology is in its early phases of development (which started in
2009).

The International Classification of Traditional Medicine
(ICTM) is another terminology in the WHO Family of Interna-
tional Classifications. Its structure and development process is
very similar to that of ICD-11. However, it is a smaller project,
which was started later than the ICD-11 project. Thus, it has
benefitted from the experiences of ICD-11 developers and it
used the tools that were already built for ICD-11. ICTM will
provide an international standard terminology as well as a clas-
sification system for Traditional Medicine that can be used for
encoding information in health records and as a standard for
scientific comparability and communication, similar to ICD-11.
Teams of domain expert from China, Japan and Korea are col-
laborating on a web platform with the goal of unifying the
knowledge of their own traditional medicines into a coherent
international classification. Even though ICTM shares some of
the structures with ICD-11, there are many characteristics that
are specific only for traditional medicine. ICTM is also de-
veloped concurrently in four different languages (English, Chi-
nese, Japanese and Korean).

The Ontology for Parasite Lifecycle (OPL) models the life
cycle of the T.cruzi, a protozoan parasite, which is responsi-
ble for a number of human diseases. OPL is an OWL ontol-
ogy that extends several other OWL ontologies. It uses many

3http://www.who.int/classifications/icd/ICDRevision/
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(a) National Cancer Institute thesaurus (NCIt) (b) International Classification of Diseases
(ICD-11)

(c) International Classification of Traditional
Medicine (ICTM)

(d) Ontology for Parasite Lifecycle (OPL) (e) Biomedical Resource Ontology (BRO) (f) Wikipedia ICD-10

Figure 1: An overview of the five ontologies studied in this project plus Wikipedia ICD-10 (bottom right) for comparison. Concepts are depicted as nodes, and
relationships between concepts are depicted as edges. The size of the nodes represents the amount of changes done by users on each concept. The black node
represents the root node of each ontology. Some simplifications are applied to avoid visual clutter (including the limitation to display only a fraction of the most
active nodes for every data set). The figure depicts the structure of ontologies at the end of our observation periods. Different levels of ontology complexity and size
can be discerned.

OWL constructs such as restrictions and defined classes. Sev-
eral users from different institutions collaborate on OPL devel-
opment. This ontology is much smaller and has far fewer users
than NCIt, ICD-11, or ICTM.

The Biomedical Resource Ontology (BRO) originated in
the Biositemaps project,4 an initiative of the Biositemaps Work-
ing Group of the NIH National Centers for Biomedical Com-
puting [39]. Biositemaps is a mechanism for researchers work-
ing in biomedicine to publish metadata about biomedical data,
tools, and services. Applications can then aggregate this infor-
mation for tasks such as semantic search. BRO is the enabling
technology used in biositemaps; a controlled terminology for
describing the resource types, areas of research, and activity of
a biomedical related resource. BRO was developed by a small
group of editors, who use a Web-based interface to modify the
ontology and to carry out discussions to reach consensus on
their modeling choices.

4http://biositemaps.ncbcs.org

The Wikipedia ICD-10 data set consists of all revisions of
ICD-10-related articles on Wikipedia. It was extracted from the
2011-12-01 dump of the English Wikipedia. Each article ei-
ther describes the ICD-10 classification and its 22 chapters or a
concept that includes an ICD-10 code in the info box of the ar-
ticle’s most recent revision. Wikipedia is a prominent example
of an online collaborative authoring environment offering not
only textual articles but also detailed change and contributor
information. However, contrary to ICD-11, the knowledge rep-
resentation of the Wikipedia ICD-10 data set does not follow a
predefined formal structure. Only 3,454 Wikipedia articles are
tagged with one of roughly 20,000 ICD-10 codes and are there-
fore included in our data set. On Wikipedia, an ICD-10 code ei-
ther consists of a letter (L, representing a concept near the root
node) or a letter followed by one (L60) or two numbers (L60.5,
representing a leaf of the graph). Codes may also be assigned
as ranges, e.g., L50–L60. We used the articles’ ICD-10 codes
to establish is-a relations based on ICD-10 code subsumption,
e.g., L60.5 is a child of L60.
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Description NCIt ICD-11 ICTM OPL BRO Wikipedia ICD-10

Ontology

concepts 89,142 33,714 1,311 393 528 3,454
active users 12 76 21 5 6 332,040

(77,466 registered)
developed with Col. Protégé iCAT iCAT TM Col. Protégé Biositemaps Wikipedia

formality high medium medium high low none
representation OWL OWL OWL OWL OWL Text

project progress ongoing beginning beginning completed completed ongoing
Changes changes 76,657 152,955 39,495 1,993 2,507 1,138,280

Data set
start 2009/09/23 2009/11/18 2011/02/02 2011/06/09 2010/02/12 2001/04/16
end 2010/04/12 2011/11/19 2011/12/03 2011/09/23 2010/03/06 2011/12/01

duration (ca) 6.5 months 24 months 10 months 3.5 months 1 month 127 months

Table 1: Characteristics of the data sets used for analysis. We use data from 5 collaborative ontology engineering projects from the biomedical domain and an
additional data set for control and comparison. The additional data set was obtained from Wikipedia; it consists of Wikipedia articles from the biomedical domain
and exhibits a total of 332,040 users that worked on 3,454 concepts. From those 332,040 users, a subset of 77,466 users are registered (i.e. have used an account
to edit one of the 3,454 articles from our data set, contrary to anonymous edits which are represented and referenced by “not necessarily unique” IP adresses) in
Wikipedia. The tools used to create the projects are either slightly customized versions of Collaborative Protégé or custom tailored versions of WebProtégé such as
iCAT, iCAT TM and Biositemaps.

The resulting graph differs from the ICD-10 ontology in that
some Wikipedia articles covered multiple ICD-10 concepts and
were hence not directly represented in the ICD-10 ontology.
E.g., Iodine deficiency (E00–E02, a code range not present in
the ICD-10 as such) is a parent of Cretinism (E00). The root
node of the hierarchy is the Wikipedia article on ICD-10 itself.

Changes to Wikipedia can be made either as a registered
user or anonymously. Anonymous users are identified by their
IP address at the time of their contribution. This implies that
there can be two physical persons identified by the same IP ad-
dress, and a single person can be identified by two different IP
addresses (at different times). As a consequence, we restrict
our analyses of user behavior (cf. section 4.4) to registered
Wikipedia users (a total of 77,000 as referenced in Table 1)
only. We have decided to include the Wikipedia ICD-10 data
set to be able to better understand and interpret the results of
the ontology based data sets (i.e. much like a control group),
as more findings and research in general about Wikipedia are
already available. Note that we do not actually compare the
projects to Wikipedia.

3.2. The Change and Annotation Ontology

All of the ontologies in our study are created using Collabo-
rative Protégé or its derivatives. Thus, we have a detailed struc-
tured log of change and annotation data for each of the ontolo-
gies that we study.

Protégé uses the Change and Annotation Ontology
(ChAO) [23] to represent changes. Change types are on-
tology classes in ChAO and changes in the domain ontology
are instances of these classes (Figure 2). Similarly, notes that
users attach to classes or threaded user discussions are also
stored in ChAO. In fact, ChAO records two types of changes,
so-called “Atomic” and “Composite” changes.

“Atomic” changes represent one single action within the on-
tology and they consists of several different types of changes
such as Superclass Added, Subclass Added or Property Value
Changed. “Composite” changes combine several atomic

Figure 2: Excerpt of the Change and Annotation Ontology (ChAO) used by
Protégé [23]. Boxes represent classes and lines represent relationships.

changes into one change action that usually corresponds to a
single action by a user. For example, moving a concept in-
side the ontology is represented by one composite change that
consists of—at least—four “atomic” changes for removing and
adding parent and child relations for all involved concepts. Ev-
ery change and annotation provides information about the user
who performed it, the involved concept or concepts, a time
stamp and a short description of the changed or annotated con-
cepts/properties. Whenever we talk about changes we refer
to the changes stored in the ChAO, which are always actual
changes to the ontology (as opposed to proposed changes).

As Protégé users collaborate in developing their ontology,
many use the discussion features of the tools to add comments
and annotations to the classes in the ontology. These anno-
tations are essential for collaboration as they can be attached
to concepts, for example as Explanations, to justify certain
changes or as Comments to give feedback about a concept and
to carry out discussions. These comments and annotations are
also represented as instances in ChAO. Due to the fact that we
do not use annotations for our analysis, partly because they are
not provided by all data sets, we have decided to exclude quan-
titative information of annotations.
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3.3. Data Set Characterization & Data Collection

We have selected the five ontologies studied in this work to
cover a range of different collaborative ontology engineering
projects and characteristics. The five ontologies differ in terms
of a number of salient characteristics (see Table 1):

1. size: represented by the number of concepts
2. activity: represented by the number of changes, annota-

tions and users
3. duration: represented by the time window of our change

logs

Time

2000 2002 2004 2006 2008 2010 2012

Wikipedia

BRO

OPL

ICTM

ICD−11

NCIt

Overall project time
Change log time

Figure 3: The timeline chart gives an overview of the overall project duration
(thin lines) and the change log duration (thick line) across all data sets that
are used for analysis in this paper. While data for Wikipedia is comprehen-
sive, change logs for collaborative ontology engineering projects have become
available only recently.

Our analysis covers ontologies of many different sizes rang-
ing from very large such as the NCIt with 89,142 concepts to
smaller ontologies such as the OPL with 393 concepts. Editing
activity, measured by the number of active users and changes
and annotations performed, varies greatly, from 5 or 6 users,
to dozens of users, and from 2,000 changes over the observed
period to hundreds of thousands. Because our change-log data
sets are based on ChAO, they are incredibly fine-grained and
detailed, but they also vary in length and observed project
phases (cf. Figure 3). NCIt is under active and steady ongo-
ing development. ICD-11 and ICTM both are currently in the
very beginning of their development and are scheduled to finish
active development in 2015. BRO and OPL are already com-
pleted and only have to undergo occasional maintenance work.
While this selection of change logs may hinder direct compari-
son of certain aspects, it provides a broad and detailed overview
of social dynamics at different phases in collaborative ontology
engineering projects. Our selection was in part motivated by
this goal, but was also constrained by the availability of such
detailed and fine-grained change log data.

All six data sets differ with regard to the level of formality of
their representation (see Table 1), or the extent to which differ-
ent relations, defined classes and restrictions are used within the
ontology. Two of our projects, ICD-11 and ICTM, mainly rely
on is-a relations (medium formality). The Wikipedia ICD-10
data set does not follow any predefined formal rules. While
OPL and NCIt have a higher level of formality than ICD-11 and

ICTM, the formality level of BRO is below ICD-11 and ICTM
but still more structured and formal than the Wikipedia ICD-10
data set.

The number of active users, that is the number of users that
have contributed at least one change or one annotation, varies
greatly across all different data sets. We defined activity as the
mean number of changes per month per user to be able to iden-
tify the data sets with the most active users per month. Thus,
even though the NCIt is changed only by 12 users (within our
observation period), it is the most active collaborative ontol-
ogy engineering project if the mean number of changes per
month per user (983 changes) is taken into account. Even
though ICD-11 has a very large change log of 152,955 changes
over a change log window of 24 months it is the least active
ontology (84 changes) which is due to many users perform-
ing a small number of changes. BRO has an activity of 418
changes and is the second most active ontology, before ICTM
with 188 changes (ranked third) and OPL with 114 changes
(ranked fourth).

The users who modelled and contributed to the five ontol-
ogy data sets are selected domain and ontology experts of the
biomedical domain that each ontology covers, however only
contributors to NCIt are full-time employees whose main line
of work is extending and mainting the ontology. In contrast,
contributors to Wikipedia are neither specifically selected or
employed nor are users excluded from the engineering process.

Additionally we want to emphasize that Wikipedia is an open
self-organizing effort, which means it is of a different nature
than collaborative efforts, such as NCIt, OPL and BRO, with
selected members and supervised engineering processes, which
has to be taken into account when comparing Wikipedia ICD-
10 against the other data sets. ICD-11 and ICTM are the
only ontology based data sets that are close to an open self-
organizing effort, as it is planned that the public will be able to
contribute to it in the future. During the change-log observa-
tion period for ICD-11 and ICTM, preparations were made to
release the ontology to the public by a selected (but rather large)
group of domain experts.

Data Collection: The number of changes per ontology data
set corresponds to the number of composite changes stored in
their respective ChAO5. Additionally we filtered and excluded
all automatically generated changes from our ontology based
data sets, which are not performed by human users, such as
changes that are marked as Automatic or BatchEdit. Note
that automatically generated changes (i.e. by bots) for the
Wikipedia ICD-10 data set were not filtered. For the analysis
of lexical aspects we excluded all textual changes that do not
provide sufficient information to reconstruct the actual change,
such as Annotation Modified, which only provides the changed
value and has no information stored about the original value,

5NCIt is an exception. In the user interface for the NCIt project, changes
can be queued, which introduces a new super or user-level composite change.
For our analysis, we ignored these super composite changes, as they do not
provide sufficient information about the queued changes, and only considered
the queued atomic and composite changes directly connected to these user-level
composite changes.
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(a) National Cancer Institute thesaurus (NCIt)
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(b) International Classification of Diseases
(ICD-11)
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(c) International Classification of Traditional
Medicine (ICTM)
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(d) Ontology for Parasite Lifecycle (OPL)

Week

To
ta

l n
um

be
r 

of
 c

ha
ng

es
/c

on
ce

pt
s

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

0 1 2 3 4

Changes
Concepts

0 1 2 3

0
50

0
10

00
15

00

(e) Biomedical Resource Ontology (BRO)
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(f) Wikipedia ICD-10 (with inset for the year
2010)

Figure 4: Weekly number of changes in our five collaborative ontology engineering projects NCIt, ICD-11, ICTM, OPL, BRO, and in Wikipedia ICD-10 (for
comparison). Black bars represent changes, grey bars represent distinct concepts that have been changed. Note that the x-axis is scaled differently for each project
due to differences in the change log durations. The inset for Wikipedia ICD-10 magnifies the number of changes and concepts for a period of 52 weeks (one year)
to highlight seasonal fluctuations. The insets for OPL and BRO are of smaller scale on the y-axis for reasons of readability.

(a) National Cancer Institute thesaurus (NCIt) (b) International Classification of Diseases
(ICD-11)

(c) International Classification of Traditional
Medicine (ICTM)

(d) Ontology for Parasite Lifecycle (OPL) (e) Biomedical Resource Ontology (BRO) (f) Wikipedia ICD-10 (with inset for the year
2010)

Figure 5: Ratio between weekly number of changes and weekly number of changed concepts in our five collaborative ontology engineering projects NCIt, ICD-11,
ICTM, OPL, BRO, and in Wikipedia ICD-10 (as control). Note that the x-axis is scaled differently for each project due to differences in the change log durations.
The inset for Wikipedia ICD-10 magnifies the reatio for a period of 52 weeks (one year) to highlight seasonal fluctuations.
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thus these changes are rendered not usable for semantic analy-
sis.

Additionally not all changes that are stored in the ChAO are
actually related to textual properties and therefore are not viable
to use in our semantic analysis. For example, we filtered out the
following properties as their content is not directly amenable to
our analysis: sorting label, use, display status, type, inclusions,
exclusions, primary tag, code, sub class of, preffered name,
full syn, protege:default langauge or owl:equivalent class. For
the OPL, NCIt and BRO data sets we had to do some additional
data set-specific preprocessing, i.e. description of the change
must neither be Annotation modified nor Annotation changed.

The Wikipedia ICD-10 data set is a subset of the official
Wikipedia data dumps6, which can easily be obtained online.
Due to reasons of privacy we are currently not allowed to pub-
lish the change data of our ontology data sets used in this paper.
However, discussions about making the data sets publicly avail-
able have already started.

4. Results

In the following, we present results from our empirical inves-
tigations on dynamic, social, lexical and behavioral aspects of
collaborative ontology engineering processes.

4.1. Dynamic Aspects

To understand the dynamics of collaborative ontology engi-
neering projects, we take a look at the distribution of user activ-
ity over time and analyze how the changes to different ontolo-
gies are distributed across concepts. Understanding the general
dynamics allows to gauge overall participation and activity in a
given project. Specifically, we look at the following measures:

1. Distribution of changes over time: the number of changes
CT performed during week T (Figure 4).

2. Distribution of changed concepts over time: the number of
concepts that were changed during week T , regardless of
the number of changes to each concept (Figure 4).

3. Ratio between changes and changed concepts over time:
the number of changes divided by the number of concepts
that were changed during week T (Figure 5).

4. Distribution of changes across concepts: the number of
changes for each concept over the whole observation pe-
riod (Figure 6).

The data in Figure 4 depicts the number of weekly changes
to each ontology and to Wikipedia as a control. It shows that
work is unevenly distributed across the duration of our change
log time windows in all collaborative ontology engineering
projects. Furthermore Figure 4 also addresses Research Ques-
tion 1a.

The number of distinct changed concepts varies greatly, es-
pecially for ICD-11 and ICTM, suggesting that there are times
when changes are performed on large areas of the ontology

6http://dumps.wikimedia.org/

while work is more focused on particular concepts at other
times. This is not apparent for Wikipedia ICD-10, where the
number of distinct changed concepts per week roughly stays
constant throughout the whole observation time. It is remark-
able that peak activity in NCIT and ICD-11 is higher than
peak activity in Wikipedia, which has three orders of magni-
tude more users. This finding suggests a potential fundamen-
tal difference between current collaborative ontology engineer-
ing projects and other collaborative authoring systems such as
Wikipedia.

The ratio between changes and changed concepts across
weeks T (Figure 5), which is already implicitly available in
Figure 4, provides additional insights into the average amount
of changes contributed to each concept during week t ∈ T . It
is interesting to observe that ICTM exhibits the highest peak in
average, and thus the highest concentration of activity on spe-
cific concepts while changes during week t ∈ T in the other
data sets seem to be more evenly distributed across concepts
(smaller peaks).

Figure 6 depicts the number of changes per concept for all
data sets and shows how changes are distributed across con-
cepts within each project, thus yields insights that can be used
to address Research Question 1b. The plots show common pat-
terns across data sets where a few concepts are changed a lot,
and the majority of concepts receive few or no changes.

Discussion
Our analysis of dynamic aspects of ontology development

(Figure 4) shows that changes happen in bursts. This observa-
tion is plausible for projects such as ICD-11 and ICTM where
ontology development is not the main activity for any of the ed-
itors. Rather, they add and edit the terms in their “free” time,
with bursts of activity correlating with the time of face-to-face
meetings and project milestones / deadlines.

We were able to map the bursts in activity of ICD-11 (see
Figure 4(b)) to dates of important milestones and face-to-face
meetings which were provided WHO. For example, the first
peak (weeks 20 to 24) was the deadline for the launch of the
Alpha Draft, after the second peak (weeks 39 to 45) a first
printed version of the Alpha Draft was published with a target
of 80% of all definitions to be completed and 20% of full con-
tent model population completed. The third and fourth peak
(weeks 59 to 67 and 68 to 74) correspond to internal group
meetings with the prerequisite of having completed all work as-
signed to these groups to be able to progress further and release
the Beta Draft. The fifth peak (weeks 74 to 81) correlates to the
planned (but canceled, due to Icelandic Volcano) Alpha Review
meeting where all work on the Alpha Draft should have been
finished. Instead the start of the Beta Draft was postponed one
year. This is why the sixth peak (weeks 88 to 104) correlates to
the final deadline for the Alpha Draft.

Further investigation to validate that this observation is also
true for the other ontology based data sets is necessary but a first
look on important dates for NCIt and ICTM confirm our intu-
ition. On the other hand, the durations of our change-logs for
OPL and BRO are too small to draw meaningful conclusions.
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(a) National Cancer Institute thesaurus (NCIt) (b) International Classification of Diseases
(ICD-11)

(c) International Classification of Traditional
Medicine (ICTM)

(d) Ontology for Parasite Lifecycle (OPL) (e) Biomedical Resource Ontology (BRO) (f) Wikipedia ICD-10

Figure 6: Number of changes per concept ordered by rank for NCIt, ICD-11, ICTM, OPL, BRO and Wikipedia ICD-10. Note that the y-axis is scaled differently
for Wikipedia ICD-10 due to the large amount of changes in this data set. Across all data sets, most concepts receive few or no changes (concepts in the long tail),
while a few changes receive disproportionate attention by the community (concepts in the head).

(a) NCIt (b) ICD-11 (c) ICTM (d) OPL (e) BRO (f) Wikipedia ICD-10

Figure 7: Distribution of changes across users for NCIt, ICD-11, ICTM, OPL, BRO and Wikipedia ICD-10. Each vertical bar represents the number of changes
done by a single user on a log scale. The distributions at large broadly resemble a power-law, having a few users doing the majority of work and many users (the
long-tail) exhibiting only little participation. In the Wikipedia ICD-10 data set, only registered users have been considered. Due to the sheer number of registered
users (77,466) in the Wikipedia ICD-10 data set, individual bars are not easily discernable.

Interestingly, this pattern appears to be also true for projects
such as NCIt where full-time job ontology engineers are em-
ployed. For Wikipedia, the activity distribution is fairly uni-
form, likely because of the much larger set of contributors.
However, some levels of fluctuation in activity can be observed
on Wikipedia as well. In Wikipedia, these fluctuations appear
to be driven by seasons (vs. milestones) though, with low ac-
tivity during (Northern Hemisphere) summers and end-of-year
holidays.

This information could be used to distribute (i.e. more
evenly) and coordinate activity between milestones and impor-
tant project meetings, which could positively influence user ac-
tivity and thus, the overall quality of the resulting ontology.

When directly comparing the ontology projects to our
Wikipedia sample, similar bursts in activity can be observed.
However, in Wikipedia these bursts are related to annual hol-
idays such as christmas and given the larger amount of users
contributing to Wikipedia the actual difference between the
bursts of activity and the remaining weeks is of a much smaller
(relative) scale. It appears that this observation could also be
related to the project driven development of the ontologies and
should be further investigated in future work to provide a more

profound answer for the long-term Research Question 1c.
Figure 6 highlights the distribution of changes per concept.

Here, the graphs for different projects are quite similar, with a
few concepts getting a very large number of changes. In addi-
tion, Figure 6 shows that most work is concentrated on very few
concepts while major areas of the ontology are ignored. In gen-
eral, the distribution of work within ontologies is similar to the
distribution of work in the Wikipedia ICD-10 data set. The only
exception is ICTM where almost all concepts received several
changes.

As work seems to be concentrated around few concepts,
User-Interface designer could automatically and dynamically
help users to identify and aid browsing these concepts (via for
example recommender techniques [40]).

4.2. Social Aspects

In analyzing the social aspects of collaboration, we focus on
how the changes are distributed among users and try to mea-
sure how much users collaborate with one another when they
develop ontologies. To this end, we look at the following social
characteristics of collaborative ontology engineering processes:
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(a) NCIt (b) ICD-11 (c) ICTM

(d) OPL (e) BRO (f) Wikipedia ICD-10

Figure 8: Collaboration graphs for all data sets. Nodes represent users who collaborated with at least one other user on at least one concept within our observation
period. The node size represents the amount of changes and annotations performed by the user while edge weights represent the amount of co-editing/collaboration
between two users. In the following, we estimate the extent of collaboration in our data sets by calculating a collaboration ratio, i.e. the number of users who have
annotated or changed at least one common concept with another user, divided by the total number of registered users. Thus the extent of collaboration is 100% in
NCIt (12/12), 97.37% in ICD-11 (74/76), 90.48% in ICTM (19/21), 83.33% in BRO (5/6) and 60% in OPL (3/5). The Wikipedia ICD-10 graph shows nodes for all
231 registered users who performed at least 300 changes, and edges between users who have mutually edited at least 100 common pages. Collaboration has been
defined as two users who have performed at least 1 change on the same concept for ontology data sets and 100 for the wikipedia data set. Due to the nature of this
definition, the most active users are also the most central users, however it can be observed that rather high degrees of collaboration (based on edge weights) also
occur between smaller nodes (cf. NCIt, ICD-11 and Wikipedia ICD-10).

1. Distribution of changes across users: number of changes
performed by each user over the observation period (Fig-
ure 7).

2. Collaboration graph: a graph where nodes correspond to
users that performed changes on concepts, and edges con-
nect users who edited the same concept (Figure 8).

The distribution of work across users broadly resembles a
power-law distribution for all ontology data sets, meaning that
there are few users with a very high participation rate contribut-
ing many changes individually and that there are many users
with moderate or low participation rate contributing only very
few changes (the long-tail) individually and addresses Research
Question 2b.

The collaboration graphs depicted in Figure 8 characterize
social interactions in our projects and addresses Research Ques-
tion 2a. We are going to use a rather simple definition of col-
laboration, where some level of collaboration can be assumed to
occur when two different users change the same concept during
our observed change log time window. Our analysis suggests
that collaboration among users can be observed across all data
sets (including Wikipedia ICD-10) independent of their size or
the number of active users which also addresses Research Ques-

tion 2c
The measures introduced in this section provide valuable in-

sights about the amount of contributions and collaboration be-
tween users of the analyzed projects. Furthermore, this infor-
mation could be subject to a more detailed investigation to ex-
plore if the quality of a concept directly correlates to the amount
of distinct users that have contributed to it, similar to the anal-
ysis performed by Wilkinson and Huberman [7] on Wikipedia
articles.

Discussion
We have limited our analysis to ontologies that had at least

two editors, in order to be able to analyze social aspects of col-
laboration. As Figure 8 shows, all projects with multiple users
also have those users collaborating and editing the same con-
cepts. The percentage of editors who collaborated with other
editors range from 60% to 100%, with all but OPL having more
than 80% of contributing users collaborating. OPL had only
five contributors, and two of them did not collaborate with oth-
ers. The collaborations graphs in Figure 8 also clearly highlight
the multi-dimensional nature of collaboration: the graphs are
quite densely interlinked, with no apparent cliques. In ICD-11,
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(a) National Cancer Institute thesaurus (NCIt) (b) International Classification of Diseases
(ICD-11)

(c) International Classification of Traditional
Medicine (ICTM)

(d) Ontology for Parasite Lifecycle (OPL) (e) Biomedical Resource Ontology (BRO) (f) Wikipedia ICD-10

Figure 9: Vocabulary growth over time: Absolute word count (black) and absolute size of vocabulary (grey) over time for NCIt, ICD-11, ICTM, OPL, BRO and
Wikipedia ICD-10. The x- and y-axes are scaled differently due to different project vocabulary sizes and change-log window durations.

where editors organizationally form groups (called Topic Ad-
visory Groups, or TAGs) that comprise the specialists in spe-
cific classes of diseases (e.g., Diseases of skin or Mental dis-
eases) some clique-like structures can be observed after manu-
ally processing the graphs, however further analysis is needed
to confirm this observation. But even in ICD-11, we found
that the collaboration graph links editors from different TAGs,
clearly indicating that collaboration happens across these orga-
nizational boundaries. Due to the definition of collaboration
used in this paper the most active users are also the most cen-
tral users in Figure 8. Nonetheless it can be observed that rather
high degrees of collaboration (edge weights) also occur be-
tween smaller nodes (e.g. when looking at NCIt and ICD-11).

Figure 7 shows that in all ontology projects, just as in
Wikipedia, the amount of work that each author contributes is
close to a power-law distribution: a few authors contribute a
lot and the rest contributes relatively little. This observation is
true even for OPL, which had only 5 contributors. Surprisingly,
this observation is also true for NCIt, where for all contributors,
editing NCIt is part of their daily job. Although, for NCIt we
can observe that there are very few contributors with extremely
small number of contributions. In general, the social factors in
terms of the number of contributions seem to be no different for
ontologies than they are for Wikipedia.

The distribution of changes across users enables ontology ad-
ministrators to identify not only the most active (and inactive)
users but also provides first insights about the ratio between
most active and inactive users. If additional information about
the progress and quality of each concept in an ontology is avail-

able, domain experts could be identified, for example by analyz-
ing how often they have contributed to high-quality concepts.

4.3. Lexical Aspects
To study the lexical evolution of ontologies, we initially fo-

cus on the properties in the ontologies that have textual values
(i.e., values of type String or rdf:Literal). We analyze the lexical
stabilization of ontologies by considering how much the text of
these properties changes as the ontologies evolve and whether
or not this text stabilizes over time—indicating stabilization of
textual ontology content.

We use the following measures to quantify changes in textual
properties of the ontology:

1. The vocabulary size can be measured using the number
of words and the number of distinct words in all textual
properties in the ontology at time T (Figure 9).

2. The Levenshtein edit distance LD(α, β) [41] measures the
number of characters that have to be added, deleted, or
modified to turn the original text α into the newly changed
to text β. We calculate the average Levenshtein distance
of all textual changes occuring during a sliding window (1
week) starting at Tstart and ending at Tend, that is,

LD(T ) =
∑

c∈Ctext:Tstart≤tc≤Tend

LD(αc, βc),

where tc denotes the time of a change c, αc the property
value before the change, and βc the new value (Figure 10).
For calculating the average Levensthein distance per week,
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all changes that either introduce, delete or modify textual
attributes are processed.

3. The preservation rate measures how much of an edited
text is preserved and can be expressed in terms of the
longest common subsequence LCS(α, β) of two texts α and
β,

PR(α, β) =
LCS(α, β)
|α|

.

Again, we calculate the average preservation rate of all
changes that modify textual attributes of a concept and
which occurred during a sliding window (1 week) starting
at Tstart and ending at Tend (Figure 11). For calculating
the average preservation rate we have limited the analy-
sis to only consider changes that modify textual proper-
ties (i.e. if an empty textual property is populated with
text, the Levenshtein distance will be the length of the
newly entered string). According to the definitions of
the preservation rate it is an asymmetric measures (i.e.
PR(old, new) , PR(new, old)). Therefore it is important
to note that all changes provide both, the old and new tex-
tual values of the changed textual property, which are then
used to calculate the corresponding metric from its old to
its new value.

Figure 9 shows that the overall size (as in the number of
words in textual properties) of most projects is still growing and
addresses Research Question 3a. Bursts of activity are clearly
visible again, in contrast to the rather steady development of
Wikipedia ICD-10. ICTM and BRO show a stabilization of
their vocabulary at the end of the observation periods. Both of
these data sets also show an occasional decrease of words.

For ICTM this decrease in vocabulary size is due to one sin-
gle user performing rather drastic changes (Delete and Replace)
to the textual properties title and short definition of what seems
to be a single branch of the ontology.

In the BRO data set, previously changed textual values were
stored in the textual property itself with the prefix: OLD. A
change of such textual properties in BRO consisted of the imme-
diate old value of that textual property, the new or just changed
textual value and additionally the former textual value of the
immediate old value, marked with OLD. One example of a sin-
gle change description of such a textual change is: “Old value:
PML Resource that provides access to tools or functions for
testing statistical hypothesis against data. OLD A statistical
algorithm that . New value: Resource that provides access
to tools or functions for testing statistical hypothesis against
data.”. The decrease of words in BRO correlates to the time
where changes replacing the textual property and deleting the
additional textual property OLD were performed. However, the
distinct word count for ICTM and BRO is nearly unaffected by
these changes.

Outliers in the vocabulary growth plot for the
Wikipedia ICD-10 data set are actually examples of van-
dalism, where a single page was flooded with (non-topical)
content. Similarly, there are decreases of the overall vocabulary
size when the content of a single page was deleted, although
their impact is not as high as some changes of the former kind.

These acts of vandalism were reverted immediately. In the
more controlled development of the five observed ontology
projects, no such outliers can be detected, and indeed “spam”
is not a problem there.

Figure 10 depicts the extent of lexical stabilization for
each project measured by the corresponding Levenshtein dis-
tance. We can observe that the lexical attributes of the
Wikipedia ICD-10 articles—after ten years of editing–seem
quite robust, evident in relatively low edit distances and much
smaller peaks towards the end of our observation period. In
contrast, in ICD-11, for instance, the average edit distances in-
creased continuously during the beginning of the project, and
has not decreased significantly yet (although some periods of
decreased edit distances and smaller peaks can be observed).
The “jumps” during the first half of ICD-11 changes result from
new properties being edited to a large extent, e.g., first the ti-
tle was modified across many concepts and later the diagnostic
criteria property was edited, which involved even more notable
changes.

As depicted in Figure 10 bursts of (average) Levenshtein dis-
tance during each week appear to be associated with the begin-
ning of a project (if available in our change-logs; see Figure 3)
and also with peaks of activity (see Figure 4). Despite OPL and
BRO, which both exhibit a very short change-log observation
period, the Levenshtein distance appears to be decreasing over
the projects duration. Interestingly, this can not be observed for
NCIt, the only project with full-time employees working on the
ontology. Note that further analysis are needed to validate our
assumptions.

The trend of the Levenshtein distance can be used to infer the
current state of the ontology engineering projects. For example,
it can be observed that the Levenshtein distance for ICD-11 ex-
hibits rather drastic jumps during the first half of the observa-
tion period but steadily decreases and exhibits less drastic peaks
until the end of the observation period. This is especially inster-
esting as, according to our measures and the planned public beta
release (May 2012), ICD-11 is transitioning from the beginning
of the development stage to rather steady ongoing development.

Figure 11 shows that the preservation rate quickly increases
up to almost 100% for Wikipedia, meaning that, overall, almost
every change keeps almost all previous content intact, while for
most ontology projects the preservation rate averages at around
80–90%.

The Levenshtein distance and the preservation rate intro-
duced in this chapter both address Research Question 3b

Discussion
The analysis of the Vocabulary growth over time provides in-

sights into the ratio between the number of words versus unique
words in the textual properties of the ontology. This is of in-
terest when determining whether an ontology, according to the
change-logs, contains all the vocabulary required to represent
its destined domain, or if users are still extending the vocabu-
lary, indicating that the vocabulary is not yet sufficient to model
the destined domain.

We used the change data to analyze the content of the con-
cepts and their stabilization. In this work, we have concentrated
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(a) National Cancer Institute thesaurus (NCIt) (b) International Classification of Diseases
(ICD-11)

(c) International Classification of Traditional
Medicine (ICTM)

(d) Ontology for Parasite Lifecycle (OPL) (e) Biomedical Resource Ontology (BRO) (f) Wikipedia ICD-10

Figure 10: Average Levenshtein distance per change during week T (sliding window of 1 week) in our five collaborative ontology engineering projects NCIt, ICD-11,
ICTM, OPL, BRO, and in Wikipedia ICD-10 (for comparison). The Levenshtein distance of all changes performed during each week have been accumulated and
then divided by the number of changes performed. During the first 50 weeks of the Wikipedia ICD-10 data set, the average Levenshtein distance per change during
each week peaks at 8500 and has been cut-off for reasons of readability. Note that the x-axis is scaled differently for each project due to differences in the change
log durations. Bursts seem to correspond to bursts in activity (see Figure 4) and appear to happen in the beginning stages of a project.

our analysis only on the textual properties of the concepts and
how much change they undergo (Section 4.3) by using slid-
ing window plots of 1 week from the start to the end of each
projects observation period, depicting the average Levenshtein
distances and preservation rates during each week. This is use-
ful as all projects are in different progress states and the ob-
served change-log periods differ greatly in length and absolute
numbers which aggravates a direct comparison of the projects.
Therefore visualizing each project from start to end provides a
broader and less biased overview rather than picking specific
subsets (e.g. covering the first peak in activity) of the change
logs, especially when referencing to the additional information
provided in Table 1.

The average Levenshtein distance per change for each week
in NCIt exhibits a few peaks and appears to be generally higher,
while for Wikipedia the greatest bursts can be observed in
the beginning stage of the project and for the other ontology
based data sets bursts appear to correlate with bursts in activ-
ity. Nonetheless, the highest peaks of Levenshtein distance in
Figure 10 are not observed together with the highest peaks in
activity (see Figure 4). Naturally, the textual properties, while
extremely important in biomedical ontologies, constitute only a
fraction of the overall ontology content. In future work, we plan
to add the investigations of the stabilization of other ontology
structures, which also includes different types of relationships,
to our analysis.

Figures 10 and Figure 11 show that the quantitative analysis

of the changes to textual properties can provide an insight into
the stage of the project and into the level of lexical stabiliza-
tion, all with regard to the overall duration of the project itself
and the analyzed observation period (for more details see Fig-
ure 1). If the project is under very active development (e.g.,
NCIt and ICD-11) during the observation period of our change-
logs, the changes to textual properties are significant (i.e., Lev-
enshtein distance is higher and the preservation rate is lower).
Figure 10 confirms this observation since it is the same ontolo-
gies that have larger Levenshtein distance and lower preserva-
tion rate at the end of the process—the ontologies that are still
being changed actively (NCIt and ICD-11). The apparent cor-
relation between the two graphs, and the fact that Wikipedia,
the most mature project, appears to have the least amount of
changes, suggests that these quantitative measures are indica-
tive of the stabilization level of an ontology. It is important to
note however that for biomedical ontologies in general, and for
ICD-11, ICTM, and NCIt in particular, textual properties are
extremely important. The textual properties contain long con-
cept titles, textual definitions of concepts, and other descrip-
tions. However, if an ontology does not rely so much on textual
content, these distance and preservation measures may be less
informative. In this context it should be mentioned that OPL
and NCIt exhibit very few modifying changes. The majority
of these changes in OPL and NCIt is performed on the same
date and they are mainly used for maintenance work (e.g. re-
moval of typos and duplicates). Thus rather significant jumps
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(a) National Cancer Institute thesaurus (NCIt) (b) International Classification of Diseases
(ICD-11)

(c) International Classification of Traditional
Medicine (ICTM)

(d) Ontology for Parasite Lifecycle (OPL) (e) Biomedical Resource Ontology (BRO) (f) Wikipedia ICD-10

Figure 11: Average preservation rate per change during week T (sliding window of 1 week) in our five collaborative ontology engineering projects NCIt, ICD-11,
ICTM, OPL, BRO, and in Wikipedia ICD-10 (for comparison). The preservation rates of all changes which modify textual attributes and were performed during
each week have been accumulated and then divided by the number of changes performed. The preservation rate ranges from 0 indicating that the texts of a concepts
textual properties have been completely replace with newly entered text, to 1, indicating that the texts of a concepts properties have not been changed. Note that the
x-axis is scaled differently for each project due to differences in the change log durations. Weeks that show an average preservation rate of 0 are weeks where no
modifying changes have been performed.

in preservation rate in the end of the observation periods can be
observed.

One limitation when comparing Wikipedia to the ontology
data sets is the fact that the preservation rate is greatly influ-
enced by the length of textual properties that it is calculated
for. For example, the average number of words per article
on Wikipedia is 1,737.1 opposed to 13.4 words for ICD-11.
This smaller average number of words negatively influences the
preservation rate, as minor textual changes have a much higher
impact in the ontology data sets than they have in Wikipedia.
The analysis of lexical aspects can help ontology administrators
to identify the current stage of a collaborative ontology engi-
neering project by observing the trends in Levensthein distance
and preservation rate over time.

4.4. Behavioral Aspects

In analyzing behavioral aspects of ontology engineering, we
focus on two aspects in particular:

1. Propagation of activities: To explore how activities propa-
gate through the ontology, we are interested in studying
whether two temporally subsequent changes in our log
“traverse along” ontological relations (e.g. from a con-
cept A to a subconcept B), or whether these subsequent
changes are not effected by the structure of the ontology.
This analysis would tell us then, whether a community of

contributors works on a given ontology in a top-to-bottom
or in a bottom-to-top manner, or whether its behavior is
not affected by the ontological structure at all. We take a
network-centric approach to this question by framing it in
the following way: Given a random child-parent concept
relation (i.e. connecting two concepts A and B), what is
the likelihood that our change log contains two changes
for both concepts A and B within a certain time?

2. Concentration of work on hierarchy levels: To understand
what levels of an ontology receive the most attention from
contributors, we look at the distribution of changes among
different levels of concepts in the ontology, as measured
by the distance of concepts to the root concept.

To answer our first question, we defined the propagation of an
activity in an ontology in the following way: top-down traver-
sal (or propagation, see Figure 12) represents situations where
the first change was performed on the parent concept, and the
second change was performed on the child concept. Bottom-up
traversal is defined analogously.

For each child-parent relation (u, v) ∈ R with child u and
parent v we determine the minimum time an activity traverses
it from child to parent (if any),

pt↗(u, v) = min
c∈C:kc=u

d∈C:kd=v,td>tc

td − tc,
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(a) National Cancer Institute thesaurus (NCIt)
(with inset using a different scaling)

(b) International Classification of Diseases
(ICD-11)

(c) International Classification of Traditional
Medicine (ICTM)

(d) Ontology for Parasite Lifecycle (OPL) (e) Biomedical Resource Ontology (BRO) (f) Wikipedia ICD-10

Figure 12: Propagation of activity through different ontologies. Black lines represent top-down propagation of activities (“downward” propagation from root to leave
nodes) while grey lines represent bottom-up propagation (“upward” propagation from leave nodes to root). Data points represent the fraction of edges traversed
within time t for NCIt, ICD-11, ICTM, OPL, BRO and Wikipedia ICD-10. The baseline is calculated for each ontology individually, by adopting all of their
concepts retaining all in- and out-degrees but randomly setting the edges. For a more detailed description see Section 4.4. For example, if a concept in an original
network has 2 incoming and 3 outgoing is-a relations, we have retained the amount of relations (in− degree = 2, out − degree = 3) for that concept but changed the
actual source concepts of the incoming relations and the target concepts of the ourgoing relations, to random concepts in the ontology. The difference between this
baseline and the actual propagation times then tells us the influence of the actual relations in the ontology.
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(a) National Cancer Institute thesaurus (NCIt)
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(b) International Classification of Diseases
(ICD-11)
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(c) International Classification of Traditional
Medicine (ICTM)
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(d) Ontology for Parasite Lifecycle (OPL)
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(e) Biomedical Resource Ontology (BRO)
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(f) Wikipedia ICD-10

Figure 13: Distribution of changes across different levels of depths in an ontology. The plots depict the average (dark gray) and median (light gray) number of
changes per concepts at their corresponding depths for NCIt, ICD-11, ICTM, OPL, BRO and Wikipedia ICD-10. Interesting differences between different projects
are exposed. Depth 0 is not included because the root concept is “artificial” in all examined ontology projects and changes to it are not related to actual ontology
content. The y-axis for Wikipedia ICD-10 is scaled differently. NCIt and ICD-11 are the only data sets that exhibit drastic differences between the average and the
median number of changes per concept per depth level.
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(the propagation time), where kc denotes the concept affected
by change c and tc the time of change, and define the traversal
or propagation time from parent to child as the reverse

pt↘(u, v) = pt↗(v, u).

We now investigate the fraction PT(t) of relations with traver-
sal or propagation time ≤ t for different times t,

PT.(t) =
∣∣∣{(u, v) | pt.(u, v) ≤ t}

∣∣∣ / |R| .
To test the significance of our results, that is, the influence

of the actual links on the resulting propagation times, we pro-
vide the following experimental baseline: Using a configura-
tion model [42], we generate a random network with the same
distribution of in- and out-degrees as in the original ontology
network (except for the Wikipedia ICD-10 data set where we
have used the network generated as described in Section 3.1),
and apply the same analysis on it. For example, if a concept
in an original network has 2 incoming and 3 outgoing is-a rela-
tions, we have retained the amount of relations (in−degree = 2,
out−degree = 3) for that concept but changed the actual source
concepts of the incoming relations and the target concepts of the
outgoing relations, to random concepts in the ontology. The dif-
ference between this baseline and the actual propagation times
then tells us the influence of the actual relations in the ontology.

It is important to note that this analysis does not intend
to show a causal implication between individual changes of
parent/child-related concepts, but provides a “birds-eye per-
spective” on the collective activity.

By analyzing the propagation of activity across 5 different
ontology based data sets and the Wikipedia ICD-10 subset we
address Research Question 4a and 4b.

Figure 13 shows the average and median number of changes
performed on concepts at a certain depth in the ontology and ad-
dresses Research Question 4c. Activity seems to be distributed
very differently in different projects: While the average and me-
dian distribution is rather uniform for NCIt, work in ICD-11
(especially when looking at the median), OPL and BRO seems
to be more concentrated on top-level concepts, and activity in
ICTM is skewed towards concepts deeper down the hierarchy.

Discussion
In analyzing the behavioral aspects of collaborative ontology

engineering, we looked at how changes at one level relate to
changes at another level, and where in the hierarchy changes
happen. As Figure 12 shows, most of the ontologies exhibit
a similar trend: After users change a certain concept, they are
more likely to edit a subconcept of that concept than any other
concept in the ontology. Developers of ontology editing tools
can use these types of observations to facilitate a particular type
of workflow in a tool. For instance, after a user edits a concept,
a tool can make it easier for the user to get to one of its sub-
concepts. Our data shows that this effect is more pronounced in
some ontologies (e.g., ICD-11) than in others (e.g., NCit). But
because quantitative analysis of change data can point at these
distinctions, we can eventually have the tools adjust automat-
ically, based on the patterns of activity propagation. This au-
tomatic adaption, to better fit the natural engineering process,

could potentially influence activity, by minimizing the efforts
for users to contribute. However, we need to perform further
analysis to determine whether changing a particular property is
followed by changing another property—another observation
that can be reflected in the editing tools.

Figure 12 shows that for all ontology engineering projects,
ontological structure plays a role in the propagation of activities
(to different extents). In addition, the rate of top-down propaga-
tion is also higher than bottom-up propagation across different
ontology data sets (again, to different extents). For more details
on how the ontological structure for the Wikipedia ICD-10 data
set was created, refer to Section 3.1. There is a notable differ-
ence between the two directions in the development of ICD-11,
ICTM, and BRO. Contrarily, changes propagate along the hi-
erarchy in Wikipedia ICD-10 but no specific direction is pre-
ferred. This is an interesting observation in itself—it seems to
suggest that while collaborative ontology engineering projects
at large tend to work in a top-to-bottom manner, work in col-
laborative authoring systems such as Wikipedia does not exhibit
such an effect. More research is warranted, but we leave the task
of studying this phenomenon in other data sets to future work.

The low absolute propagation rates for NCIt result from the
large number of concepts and, especially, relations in the data
set, compared to a relatively low number of changes. Therefore,
it is more unlikely that, given a relation between two concepts,
both have actually been changed. However, while there is little
propagation due to the small amount of changes, activity in our
ontology data sets traverse more top-down than bottom-up, and
both directions differ notably from the baseline.

In all data sets, except for BRO, the actual rates of propa-
gation differ from the corresponding baselines generated from
random relations, implying that the actual semantic relations in
an ontology have an influence on the way the ontology is edited.
Specifically, changes of concepts are closer in time to changes
of related concepts than to other, non-related changes.

To strengthen these observations further investigations are
needed that consider additional semantic information provided
by the ontologies, such as different types of relationships, par-
titions or meriologies.

When analysing changes across different levels of depths
in our ontologies (cf. Figure 13), we observe that
Wikipedia ICD-10 features an almost uniform distribution of
work across depths, although the uppermost and lowermost
concepts are changed less frequently, which could be due to
the fact that these are very general overview articles and arti-
cles about very specific diseases, respectively, that do not have
much content to be maintained and do not cause much dispute
either. In the case of the ICD-11, depth 1 are the children of
the root node which already represent actual changeable con-
tent. However, in the OPL data set, the first three depth levels
are used as class or content separators, moving the start of the
actual changeable and change worthy content down to level 5
(see Figure 1 for visualizations of the ontology structure for our
data sets). The information gained from Figure 13 can be used
to further adapt the tools used to engineer an ontology to con-
centrate navigation (or suggestions on where to work next) to
depths or concepts of actual content, i.e. skipping those con-
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cepts mainly used as content seperators.

5. Summary & Discussion

In this paper, we present an analysis of quantitative data
that characterizes collaborative development of several large
biomedical ontologies. The analysis of this quantitative data en-
abled us to gain qualitative insight into dynamic, social, lexical,
and behavioral aspects of the process of ontology engineering
itself. We summarize these insights in the rest of this section by
revisiting the set of our initial research questions:

5.1. Research Questions

1. Dynamic aspects: How does activity in the system evolve
over time? How are changes to the ontology distributed across
concepts? How does activity in ontology engineering projects
differ from activity in other collaborative authoring systems
such as Wikipedia?
We found that activity in collaborative ontology engineering
projects happens in bursts (Figure 4), and that the distribution
of changes across concepts broadly resembles a power-law
distribution (Figure 6). The bursts in activity in ontology en-
gineering projects are similar to other collaborative authoring
systems such as Wikipedia, but reflect milestones and impor-
tant meetings, whereas in Wikipedia the less active periods
correlate to seasonal events such as christmas. The difference
between periods of high and low activity is less dramatic in
Wikipedia, when directly compared to the ontology based data
sets, which could be a result of the great discrepancy of active
users in the different data sets. The distribution of changes
across concepts is similiar in our ontology engineering data
sets and Wikipedia ICD-10 and suggests that work is rather
concentrated on few concepts of each data set than evenly
distributed across the ontology.. ICTM, the only data set that
has been observed since the actual creation date, exhibits the
highest peak in average changes per concept, right at the start
of the project, and thus the highest concentration of activity on
specific concepts while changes in the other data sets seem to
be more evenly distributed across concepts with smaller peaks.

2. Social aspects: Is collaboration actually happening or do
users work independently? How is the work distributed among
users? How does collaboration in ontology engineering differ
from collaboration in other systems such as Wikipedia?
In our analysis, we found evidence for weak forms of col-
laboration among contributors (Figure 8). The users that
have contributed the most to each data set are also the most
central users, however a first investigation has shown that large
amounts of collaboration are also happening across less central
users. However, in this collaboration, work is distributed
unequally (Figure 7). From our comparison with Wikipedia,
we do not observe significant differences with regard to our
definition of collaboration.

3. Lexical aspects: Is the vocabulary in the ontology stabi-
lizing or does it continue to change/grow? Are the concepts

in the ontology lexically stabilizing or do they continue to
change?
Our analysis shows that structural events and maintenance
work is reflected in the absolute word count (Figure 9) but has
only minor effects on the distinct word count across all data
sets. The average Levenshtein distance per week Additionally
we found indications of lexical stabilization in some projects,
and an absence of such indications in others, depending on
different project phases (Figure 11). By studying the trend
of textual changes over time, we found that across data sets,
an average preservation rate (Figure 11) of around 80–90%
together with a low Levenshtein distance (Figure 10) across
several weeks seems to be indicative of lexical stabilization.
However, more work is warranted as property and other kinds
of changes (i.e. structural changes) need to be taken into
consideration as well.

4. Behavioral aspects: Are collaborative ontologies con-
structed in a top-down or a bottom-up manner? Are collab-
orative authoring systems such as Wikipedia constructed simi-
lar (i.e. top-down or bottom-up) to collaboratively engineered
ontologies? How do contributors allocate activity on different
abstraction levels in different ontologies?
We found that semantic ontological structures have an influence
on focusing activities of contributors in collaborative ontology
engineering projects (Figure 12). While ontology engineering
projects exhibit a stronger tendency to work from top-to-bottom
than from bottom-to-top, Wikipedia users exhibit a more bal-
anced editing behavior. This in itself is an interesting find-
ing that warrants future research on differences between col-
laborative ontology engineering systems such as Collaborative
Protégé and collaborative authoring systems such as Wikipedia.
Our analysis also reveals a more uneven distribution of attention
on different abstraction levels in ontology engineering projects
than Wikipedia (Figure 13).

5.2. Limitations
While our work provides useful insights into the social dy-

namics of collaborative ontology engineering projects, our find-
ings are limited in some ways. First, our observations are based
on partial snapshots of change log data from five selected ontol-
ogy engineering projects (cf. Figure 3). While this constrains
us from drawing conclusions about collaborative ontology en-
gineering projects in general, our analysis provides novel and
unique insights into the social fabric of such projects at differ-
ent stages of a project’s life cycle. Our results demonstrate that
qualitative insights can be obtained from quantitative analysis
of change logs, and our work makes a case for more research in
this direction in the future. We leave the investigation of more
complete change logs to future work. Second, we studied only
collaborative ontology engineering projects that were created
with Protégé, with a focus on the biomedical domain. How-
ever, our analysis and observations can be used as a method-
ology, which is not specific to these ontologies. Rather, one
can apply the same quantitative analysis to gather information
about the hidden social dynamics of any ontology which has a
structured log of changes associated with it. Our focus is set
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on the measures that we can apply to such change data and the
ways to analyze the quantitative results.

In addition to the already mentioned limitations, Wikipedia
is a community effort, thus is similar to the engineering model
of ICD-11 and ICTM but is in general not directly comparable
to collaborative or group efforts with a pre-selected and limited
amount of contributors. To allow for a better interpretation of
the results, we have added a Wikipedia data set that contains
all pages that are tagged with codes used in ICD-10. It should
also be noted that in this paper we set our scope on studying
the hidden social dynamics behind the engineering process and
did not analyze the effects resulting from using different tools to
create ontologies in a collaborative manner. A first quantitative
observation of the ontologies presented in this paper indicates
that web-based tools, such as WebProtégé and iCAT are used
when trying to involve a greater and more diverse audience in
the engineering process, contrary to desktop applications which
are used by smaller and more focused teams (see Table 1).

Promising topics for future work that can build on the results
presented in this paper include (i) determining qualitative and
quantitative differences of attributes assigned to the ontologies
such as complexity, (ii) identifying and measuring functionality
of different engineering tools that correlates with either collab-
oration or quality and (iii) expanding the scope of investigated
ontology engineering tools.

5.3. Outlook

The long-term vision of our research is to study whether or
not we can make a similar argument for collaborative ontol-
ogy engineering as agile programming [43; 44; 45; 46; 47; 48]
did for software development. In other words, whether study-
ing, analyzing and developing a better understand of the pro-
cesses behind collaborative ontology engineering can help im-
prove ontology evaluation and thereby help improve the quality
of ontologies. However, the work presented in this paper repre-
sents a very first step in this direction by probing the feasibility
of comparing and measuring collaborative ontology engineer-
ing processes through change log analysis. Additionally, the
results presented in this paper have uncovered new and inter-
esting research questions where further analysis is warranted.
For example, when closely inspecting Figures 4 and 5, one
can see that the overall amount of performed changes does not
necessarily correlate with the average number of changes per-
formed on each concept. When combining these observations
with the information from Figure 3, a first hypothesis could be
that in the beginning of a collaborative ontology-engineering
project, work is concentrated on fewer concepts and only later
on in these projects, work gets more evenly distributed across
the ontology. Another very interesting topic of future work in-
cludes the refinement of the measure used to analyze and de-
fine actual cooperative work in collaborative ontology engineer-
ing projects to include information about the number of over-
all changed concepts of each user in relation to the commonly
edited concepts. However, a broader analysis is warranted to
provide conclusive answers and results to these research ques-
tions.

6. Conclusions

This work exposes the hidden social dynamics behind collab-
orative ontology engineering projects. The main results of this
paper are twofold: (i) On a theoretical level, our work makes an
argument for expanding the existing arsenal of ontology eval-
uation techniques with new techniques that analyze the social
dynamics behind collaborative ontology engineering projects.
(ii) On an empirical level, our work conducts a broad inves-
tigation of five real-world collaborative ontology engineering
projects at different stages and provides unique insights into the
social fabric and -processes of collaboration.

As change data will become available more broadly, we be-
lieve that analysing social dynamics will become more impor-
tant in any future attempt aimed at assessing the outcome of
collaborative ontology engineering projects. Because the on-
tology engineering processes are an important determinant of
the quality of ontologies, we believe our work represents an
important stepping stone towards better means and instruments
for ontology evaluation in collaborative ontology engineering
settings in the future.

We have presented, applied and preliminarily validated an
initial number of useful measures that reveal interesting
qualitative differences between different ontology engineering
projects that demand more explanations in terms of organizing
and managing quality in such projects in the future.
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